Naprawianie aut

umianej automatyce ? w mechanicznych urządzeniach regulacyjnych (np. automatycznych zaworach); w urządzeniach pomiarowych np. zegarach elektronicznych do przesuwania wskazówek; w robotyce ? do sterowania ruchem ramion ro

Naprawianie aut

Wykorzystanie silników krokowych

Silniki krokowe są stosowane wszędzie tam, gdzie kluczowe znaczenie ma możliwość precyzyjnego sterowania ruchem:

w szeroko rozumianej automatyce ? w mechanicznych urządzeniach regulacyjnych (np. automatycznych zaworach);
w urządzeniach pomiarowych np. zegarach elektronicznych do przesuwania wskazówek;
w robotyce ? do sterowania ruchem ramion robotów, kół w automatycznych wózkach widłowych itp.;
w drukarkach igłowych i atramentowych oraz ploterach ? do sterowania ruchem głowicy drukującej/igły i przesuwu papieru/folii;
w napędach CD/DVD ? do sterowania ruchem głowicy czytającej zawierającej laser;
w samochodach ? odpowiada za obroty na biegu jałowym.

Źródło: https://pl.wikipedia.org/wiki/Silnik_krokowy


Warto wiedzieć

Paliwem spalanym w silniku iskrowym musi być paliwo intensywnie parujące w układzie zasilania silnika w paliwo lub w cylindrze silnika. Paliwo to może występować w formie płynnej lub gazowej. Do stosowanych paliw należą m.in:

benzyna
benzyna bezołowiowa
etylina
LPG - gaz płynny
CNG - sprężony gaz ziemny
metanol
alkohol etylowy (jako samodzielne paliwo lub jako dodatek do benzyn)
Stosunek paliwa do powietrza w mieszance powinien być utrzymany w odpowiednim dla danego silnika przedziale. Zbyt mała ilość powietrza sprawia, że mieszanka staje się zbyt bogata - sprawność silnika maleje, spalanie jest niezupełne, wzrasta stężenie tlenku węgla w spalinach1. Zbyt duży stosunek powietrza do paliwa powoduje zubożenie mieszanki, co skutkuje rozciągnięciem spalania w czasie do suwu rozprężania1.

Silnik może być zasilany w paliwo poprzez: gaźnik, wtrysk paliwa (bezpośredni lub pośredni; jedno- lub wielopunktowy) oraz mieszalnik gazu1. Paliwo przed dotarciem do komory spalania musi zostać rozpylone w powietrzu1.

Silnik iskrowy może być zbudowany w układzie silnika dwusuwowego, jak i w układzie czterosuwowym, istnieje jeszcze tzw. silnik Wankla z obrotowym tłokiem (rotorem), jest jednak bardzo rzadko stosowany. Odmiana czterosuwowa w wielu krajach nazywana jest silnikiem Otto.

Źródło: https://pl.wikipedia.org/wiki/Silnik_o_zap%C5%82onie_iskrowym


Działanie pompy

W każdym przypadku, by pompa mogła pracować, musi być zalana, co oznacza, że przestrzeń robocza pompy oraz rurociąg ssawny musi być wypełniony cieczą i odpowietrzony w momencie rozruchu pompy. Wyjątkiem od tego są pompy samozasysające. Także niektóre pompy wyporowe, charakteryzujące się wysoką szczelnością oraz umieszczone w układzie pompowym o niewielkiej wysokości ssania są w stanie rozpocząć pracę bez wcześniejszego zalania rurociągu ssawnego.

Pompy charakteryzują następujące parametry:

wydajność (Q) ? mierzona w objętości przepompowywanej cieczy na jednostkę czasu, w układzie SI wyrażona w metrach sześciennych na sekundę;
wysokość podnoszenia lub maksymalne ciśnienie (H) ? mierzone w metrach słupa wody lub w układzie SI w paskalach;
moc (N) ? obliczana jako iloczyn wysokości podnoszenia i wydajności.

Dobór pomp polega na wyborze pompy o parametrach odpowiednich do potrzeb. Pompa powinna tłoczyć objętość cieczy lub osadów odpowiednią do potrzeb (wydajność), gdyż to warunkuje jej efektywne wykorzystanie. Transportowane medium powinno być tłoczone pod stosownym ciśnieniem (wysokość podnoszenia), co zapewnia dostarczenie go do punktu odbioru pod oczekiwanym ciśnieniem. Stąd wniosek, że moc pompy musi być odpowiednio dobrana do pożądanej wydajności i wysokości podnoszenia. Każda pompa ma pewien przedział wydajności i wysokości podnoszenia, w którym może pracować. Jeśli pompuje wodę na maksymalną wysokość, to jej wydajność spadnie i na odwrót. Optymalna wydajność, wysokość podnoszenia i sprawność pomp zależą od rzeczywistych wymogów eksploatacyjnych wynikających ze specyfiki pompowanej cieczy.

Źródło: https://pl.wikipedia.org/wiki/Pompa